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Introduction

Cantor’s Theorem, one of the most important theorems in set theory,
has many different equivalent formulations
Generally, the Theorem can be summarized by its most notable
implication: "There is no largest cardinal number."
The main formulation and proof method taught in undergraduate set
theory and analysis courses relies on proving that the power set (the
set of all subsets) of any set is strictly larger than the original set,
finite or infinite
In this presentation, I shall demonstrate an alternative formulation and
proof of Cantor’s Theorem utilizing the set 2X



What is 2X , anyway?

Some math textbooks consider 2X to be exactly equivalent to the
power set P(X ), and refer to both as "the power set"
However, this is not literally true
Generally, for two sets A,B we define:

BA := {f | f : A → B}

or "BA is the set of all functions A → B"
2 is simply the natural number 2, which in the standard set theoretic
definition, is the set {0, 1}
So in summary, 2X is expressed as "The set of all functions from the
set X to the set {0, 1}"
We can say |2X | = 2|X | (this is the definition of the cardinal 2|X | when
X is infinite; try proving it for finite sets!)
Furthermore, |2X | = |P(X )| (another exercise)



An application of set powers: Linear Algebra

If you’ve done linear algebra before, then you’ve seen set power
notation used in Rn, or the set of all n-dimensional vectors
For example, we can precisely define any vector (x , y) ∈ R2 as such:

(x , y) = [f : 2 → R] ∈ R2 | f (0) = x , f (1) = y



Motivation

But why even go through the effort of this alternative proof?
Through this formulation of the theorem, we get a more precise value
for the cardinality of power sets, one that works for both finite and
infinite sets
I personally find 2|X | to be a "purer" expression than |P(X )|, though
this is just an opinion; the former is a representation of a number
(infinite cardinal or not) while the latter is the size of another set
Additionally, this proof aligns much closer with the informal
diagonalization argument; imagining diagonalization with sets is much
harder in my opinion than imagining it with digits



The Proof (Introduction)

We want to prove the statement "There is no largest cardinal number." We
shall show that for any set and its associated cardinality, there is a set with
a strictly larger cardinality.

Let X be any set. We want to show that there exists a set Y such that
|X | < |Y |. We pick Y = 2X .

We shall show:
|X | ≤ |2X | (there’s an injection from X to 2X )
|X | ≥ |2X | is impossible (there’s no surjection from X to 2X )

(Note that technically, only the latter is strictly required to prove the
theorem, as ¬(|X | ≥ |2X |) =⇒ |X | < |2X |, but this is actually surprisingly
difficult to prove for infinite cardinals, and requires the Axiom of Choice, so
our chosen route gives us a "simpler" proof.)



The Proof (Part 1: |X | ≤ |2X |)

We are trying to find an injective function f : X → 2X . In other words, we
want a function that maps each element of X to another function
s : X → {0, 1} (call this inner function a "sequence"), and we want each
mapped sequence to be distinct from any other.

For any x ∈ X , define f (x) = sx : X → {0, 1} such that for any y ∈ X ,

sx(y) =

{
1 if y = x

0 otherwise

In other words, map each element x to its "indicator" sequence that only
gives the value 1 if x is passed.

Suppose for some x1, x2 ∈ X that x1 ̸= x2. Then f (x1) = sx1 and
f (x2) = sx2 . sx1(x1) = 1 by definition. However, since x1 ̸= x2, sx2(x1) = 0.
Thus, since they differ in at least one value, sx1 ̸= sx2 , meaning
f (x1) ̸= f (x2). Thus, the function f is an injection, and |X | ≤ |2X |.



The Proof (Part 2: ¬(|X | ≥ |2X |))
Now we show that there can be no surjection between X and 2X . Let
f : X → 2X be arbitrary. To show non-surjectivity, we must show that the
image f [X ] is not equivalent to the codomain 2X by demonstrating the
existence of a sequence s ∈ 2X such that s /∈ f [X ].

For any x ∈ X , define s : X → {0, 1} as:

s(x) =

{
1 if [f (x)](x) = 0
0 if [f (x)](x) = 1

Since s is a function X → {0, 1}, it is in 2X by definition.

For any x ∈ X , either [f (x)](x) = 0 or [f (x)](x) = 1.

If the former is true, then by definition s(x) = 1 and s ̸= f (x) since they
differ by a value. On the other hand, if the latter is true, then likewise
s(x) = 0 so again, s ̸= f (x).

Thus, there is no x ∈ X where f (x) = s, meaning s /∈ f [X ]. From there we
know that our arbitrary f is not surjective, so ¬(|X | ≥ |2X |).



The Proof (Conclusion)

From Part 1, we know that there is an injection from X to 2X (|X | ≤ |2X |).

From Part 2, we know that there is no surjection from X to 2X , meaning
there is no bijection (¬(|X | ≥ |2X |) =⇒ |X | ≠ |2X |).

It follows that the cardinality of X is strictly smaller than the cardinality of
2X (|X | < |2X |).

We conclude that there is no largest cardinal number, as for any cardinal κ,
we know the cardinal 2κ is larger. □



Remarks

This proof was adapted from a problem set given in the course
MAT246: Concepts in Abstract Mathematics taught by Tona
Wiederhold at the University of Toronto
If you’re familiar with a proof of the power set version of Cantor’s
Theorem, you’ll notice similarities in structure, though the differences
in definition of 2X and P(X ) still lead to largely distinct proofs
Exercise: try illustrating this proof as a diagonalization argument,
specifically proving there’s no bijection between the natural numbers
and infinite strings of ones and zeroes (e.g. 10101010..., 10010110...,
11111111... etc.)

https://www.youtube.com/playlist?list=PLg3LcEogU5SdzHBoBYUm5qSgr102TeMCk
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